Hexadecimal to Decimal Converter

Convert Hexadecimal to Decimal

Enter a hexadecimal number below to convert it to decimal. Our converter handles hexadecimal numbers of any length.

0x
Please enter a valid hexadecimal number (0-9 and A-F only).

How to Convert Hexadecimal to Decimal

Converting hexadecimal numbers to decimal is a fundamental operation in computer science and digital systems. Here's a comprehensive guide on how to perform this conversion:

Conversion Formula

The formula for converting a hexadecimal number to decimal is:

\[ \text{Decimal} = \sum_{i=0}^{n-1} (d_i \times 16^i) \]

Where:

  • \(d_i\) represents the decimal value of each hexadecimal digit
  • \(i\) is the position of the hexadecimal digit (starting from 0 for the rightmost digit)
  • \(n\) is the total number of hexadecimal digits

Conversion Steps

  1. Identify each hexadecimal digit in the number.
  2. Convert each hexadecimal digit to its decimal equivalent (0-9 remain the same, A=10, B=11, C=12, D=13, E=14, F=15).
  3. Multiply each decimal equivalent by 16 raised to the power of its position (rightmost digit is position 0).
  4. Sum all the resulting values.

Example Conversion

Let's convert the hexadecimal number 2A7 to decimal.

Step 1: Identify Hexadecimal Digits

The hexadecimal number 2A7 consists of three digits: 2, A, and 7.

Step 2: Convert Each Digit to Decimal

  • 2 remains 2
  • A becomes 10
  • 7 remains 7

Step 3: Multiply by Powers of 16

  • 2 × 16² = 2 × 256 = 512
  • 10 × 16¹ = 10 × 16 = 160
  • 7 × 16⁰ = 7 × 1 = 7

Step 4: Sum the Results

512 + 160 + 7 = 679

Final Result

Therefore, 2A7 in hexadecimal = 679 in decimal

Visual Representation

2A7 Hexadecimal Conversion Steps: 2 × 16² = 2 × 256 = 512 A(10) × 16¹ = 10 × 16 = 160 7 × 16⁰ = 7 × 1 = 7 512 + 160 + 7 = 679 Convert 679 Decimal Position Values: 2 in position 2 (16²) A(10) in position 1 (16¹) 7 in position 0 (16⁰) Total = 679₁₀

This diagram illustrates the process of converting the hexadecimal number 0x2A7 to its decimal equivalent 679.